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covalent bond (2.27 A), and is thus comparable with 
the apical copper-water oxygen bond of 2.195 A in 
AdCu. The internuclear Cu-Cu distance of 3.024 A is 
0.075 A longer than the corresponding distance in 
AdCu. Chemically the 'bite' of hypoxanthine and ade- 
nine should be almost identical. The effect of replacing 
the water molecule as apical ligand with a chlorine at- 
om may result in a stronger axial coordination and thus 
pull the metal ions further apart. There is probably no 
incipient covalent bonding between the copper ions 
that might counteract a larger separation. 

Molecular packing 
The environment of the complex is shown in Fig. 3. 

Each hypoxanthine ligand has two hydrogen-bond do- 
nors, N(1) and N(7), and one potential hydrogen-bond 
acceptor, 0(6). Donor atoms N(l l ) ,  N(71) and N(72) 
participate in hydrogen bonds to water oxygen atoms 
O(2), 0(3) and O(1) respectively, while the fourth do- 
nor atom N(12) is hydrogen bonded to a chlorine atom 
(21(2). The carbonyl oxygen atoms do not participate 
in hydrogen bonding. Instead both O(61) and 0(62) 
have close contacts to imidazole rings in neighbouring 
dimers, with the C = O vector pointing nearly perpendi- 
cular to the plane of the imidazole ring. O(61) is situ- 
ated 3.00 A from the plane through the imidazole ring 
of ligand (2) translated one unit along the negative z 
axis, while 0(62) is situated 3.00 A from the corres- 
ponding plane of ligand (1) inverted through the centre 
of symmetry in (1, ½, 0). The occurrence of identical in- 
termolecular short contacts for the two crystallogra- 
phically independent carbonyl groups may indicate the 

existence of a stabilizing interaction between the car' 
bonyl dipole and the z~-system of the purine moiety. 

The chlorine atom coordinated to copper is hydrogen 
bonded to two water molecules. The O(9) -H. . .  CI(1) 
bond of 3.21/~ is 'normal' while the O(1)(i)-H. • • e l( l )  
bond of 3.41/~ is on the limit of what might be consid- 
ered a hydrogen bond. The non-coordinated chlorine 
atom C1(2) participates in two 'normal' hydrogen bonds 
[N(12)-H.. .CI(2) = 3.21 A, and O(3)(iii)-H-..C1(2)= 
3.24] and one 'long' hydrogen bond [O(1)(i)-H.. .  C1(2) 
=3.50 A]. The angle /CI(1)-O(1)(i)-CI(2)= 108-8 ° is 
close to an H - O - H  bond angle, and is thus consistent 
with the presence of 'long' hydrogen bonds between 
water molecule O(1) and the two chlorine ions. 

The author wishes to thank Dr Lyle H. Jensen for 
valuable advice in the course of this work. Financial 
support under Grant AM-3288 from the National In- 
stitutes of Health is gratefully acknowledged. 
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An alternative form is derived for the phase determining formula B3.0 defining cos (~x + ~0h2 + ~0--ha--~2) 
in which improved scaling is achieved by replacing the coefficient in the original formulation of this 
formula by a ratio of averages over functions of normalized structure factor magnitudes. Subsets of the 
measured data used with the modified B3, 0 formula generally give more accurate results for the cosine 
function than the complete set of data. A method for examining various subsets and choosing an opti- 
mum value is presented. The modified B3, 0 relation readily permits use of limited subsets of the exper- 
imental data. It has application as an auxiliary formula for use with the symbolic addition procedure. 
Used with care, the modified B3, 0 formula can help to determine which triples, ~ohx + (0112-~-~9--hl--h2, are 
close to zero, a basic assumption in the symbolic addition procedure, and which ones may be exceptions. 
The formula can also help to evaluate symbolic phases. 

A form of expression B3,0 of sufficient generality for tals (equation 2.1.3 of Hauptman & Karle, 1958) and 
the present purposes is given for centrosymmetric crys- for noncentrosymmetric crystals (equation 2.1.3 of 
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Karle & Hauptman, 1958) by 

IEh,EhzEbl + hzl COS (~0h~ + CP~ z + ~0--h,--hz) 

~-- C((IEkl P -  IEI p) (IE~I +kl ~ - I E I  p) 

(IEh~+h,+klP--lflP))k+R, (1) 

where IEhl and rph are the magnitude and phase, respec- 
tively, of the normalized structure factor associated 
with the vector h, C is a constant which differs for cen- 
trosymmetric and noncentrosymmetric crystals, R rep- 
resents correction terms, IEI p is the average value of 
[El :° and p is normally chosen to be some small num- 
ber; values in the range 0-5 <p < 3 have been found to 
be useful and the results have been rather insensitive 
to the particular value ofp which was used. The average 
is to be taken over the set of vectors, k, representing 
all the accessible products in the data set as defined 
within the average brackets in equation (1). 

The constant, C, as given in the original theory was 
not suitable for application with the usual experimental 
data confined to the copper sphere of scattering and 
often introduced significant error into the calculation 
of equation (1). A procedure for obtaining a rescaled 
value for C has been presented by Hauptman (1970) 
and Hauptman, Fisher, Hancock & Norton (1969). 

A modification of equation (1) will be presented 
which eliminates the constant C, substituting instead 
a ratio of averages over the same data which are used 
to compute the average in equation (I). This modifica- 
tion, in addition, readily permits the use of a limited 
subset of the experimental data in obtaining values for 
the function cos ((Ph~ + rPhz + ~0--hl--h2). In deriving the 
new form for formula B3,0 the correction terms R will 
be omitted in the interest of simplification and in the 
expectation that their effect will be minimized, owing 
to the fact that the final result is in the form of a ratio 
of terms having similar corrections in the numerator 
and denominator. 

If hi=h2=(0,0,0)  and R is ignored, equation (1) be- 
comes 

IE00013 ~ C((IF_~Iw-IEIp)3}u. (2) 

If h , = - h 2  and R is ignored, equation (1) becomes 

lEh,lZgooo~_C((lEkl~o-lEl~)Z(IEh,+ul~-lEl~))k. (3) 

Equations (1), (2) and (3) can be combined to give the 
desired result, a modified B3,0, 

where 

A(hO=((IEklP--lEIlo)Z(IEh,+kl~'--IEIP))k . (5) 

In applying equation (4), a choice is made of vectors 
hi and h2 and then the appropriate averages can be 
computed. The calculation may be made over a re- 
stricted sample of the set of data, but this sample is 

selected from the entire set of experimental values IEhl 
expanded to include all equivalent reflections, not just 
the independent ones. It has been an empirical obser- 
vation in this laboratory that higher accuracy can be 
obtained from equation (4) if a properly chosen subset 
of the data, rather than the entire set, is used in the 
calculation. A basis for selecting the restricted sample 
is the requirement that at least one factor in the first 
average in the numerator of equation (4) have an 
JELl >c~ where c~ might assume a particular value for 
example in the range 1.5 < e < 2.5. Other values may 
be suitable. The other two factors would be unrestricted 
in the values that they could assume. Another way to 
restrict the sample to be computed in this average is to 
put requirements on each of two levi values occurring 
in two of the three factors. No constraint would be put 
on the value of the third factor. Putting constraints on 
the values of some of the factors severely limits the 
vectors k which can enter into the first average. The 
other four averages occurring in equation (4) would be 
carried out only over those values of k that enter into 
the first average in the numerator. 

One way to set the levels of the constraint e is to 
vary them so that the range in the number of contrib- 
utors to the averages in equation (4) carries the result 
for (~0hi + ~0h2 + q~-hl--hz) through the region of a flat or 
slowly varying function of the number of contributors. 
This can happen in several ways. The function can be 
slowly varying because it is in the region of a minimum, 
maximum or point of inflection, or it may be that the 
slope, though not zero anywhere, becomes quite small. 
Presumably a suitable result for the value of cos (~0hi + 
~0h2+¢_hl_h2 ) is obtained at its minimum slope as a 
function of the number of contributors to equation (4) 
because it is there that the value obtained shows a 
minimum sensitivity to change in the sampling. Not 
all calculations will give satisfactory minimal slopes 
and these should be rejected. If none or two of the 
A(h~) in the denominator of equation (4) have negative 
signs a real square root can be taken. However since 
each A(h~) is proportional to IEhll2Eooo, the presence 
of a negative value for A(hi) should make the sampling 
quite suspect and under such circumstances the calcula- 
tion should also be rejected. 

There are many ways to employ equation (4). One 
way, as mentioned several times previously (e.g. Karle 
& Karle, 1964; Karle & Karle, 1966), is as an auxiliary 
formula for use with the symbolic addition procedure. 

cos (~0hl + ~0~2 + ~02hl-h2) -- The signs of certain special two-dimensional pure real 

((lEd ~ . . . . . . . .  - I  E I--~) ([Ehl +ul~- . . . . . . . . . . . . . . . . . . . . . . . . . .  IEI ~) (IEhl +h2+kl p -  IEIP))k ((IEkl ~ -IEl~°) 3 )~k/2 , (4) 
[A(hl)A(h2)A(hl + h2)] I/2 

reflections can be calculated for several choices of hi 
and h2 associated with. large [El values in such a way 
that it is not necessary to know the phase correspond- 
ing to either hi or hz. This arises when hi and h2 are 
suitably chosen equivalent reflections. It is most val- 
uable when several choices of h~ and h2 are accessible 
to a given reflection defined by h~ +h2 affording many 

A C 2 6 B  - 15"  
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indications of the sign of Ehl+hz,'since contradictions 
in the sign obtained from equation (4) have been found 
to occur in practice. For some crystals contradictions 
rarely occur, whereas for others they occur more fre- 
quently. The sign obtained from equation (4) is the 
sign of the first average in the numerator of this for- 
mula, just as in the original B3, 0 formula. One advan- 
tage in computing equation (4) is that limited samples 
of data are readily employed and, when properly 
chosen, afford improvements in accuracy and can per- 
haps also save computer time. Another advantage is 
that the accuracy with which the magnitudes of the 
cosines of  the sums ~0ha + ~0h, + ~0--ha_h2 of known value 
are computed can be used as a rough indication of the 
reliability of  the calculations, e.g. a sign indication ob- 
tained from a computed magnitude very much less than 
unity when unity is expected cannot be considered to 
be highly reliable. The cosines have a magnitude of 
unity, for example, if all the reflections involved are 
pure real or if ~0h~ + ~0h2 is 0 or rr as a result of a special 
choice of  ha and h2 for a particular space group and 
ha +h2 belongs to a pure real reflection. For example, 
in space group P21, i fh~=(h,k , l )  and hz = (h,[c, [) then 
- h x - h 2 = ( 2 h , 0 , 2 l )  and the left side of equation (4) 
becomes cos (~02h0zz-krc), owing to the relation between 
the phases of index h k l and h/~ l for this space group. 
Since ~02h0zrkrc is real, the magnitude of the cosine 
function must evidently be unity. 

An alternative form for equation (4) can be based 
on/3 ,0  (equation 2.2.3 of Hauptman & Karle, 1958 
and equation 2.2.3 of Karle & Hauptman, 1958). In 
this case, a typical term in the averages of equation 
(4) is 

[Ekl'--I ( [ E I ' - I )  
In IF~[ In [E[ ' 

replacing ( l~ l  ~ -  IEI~). 

If all the reflections are pure real and h~ = h  2 =h,  an 
alternative form which eliminates the constant C of 
equation (1) can be written 

E2h 

.E000 i 

<(IEkl~-- IEI~) (IEh+kl~-- Igl~) (Ig=h+klr-- IEl '))k (6) 

((IEkl  ~ -  [gl?)Z(IEh+kl p -  [El ~) )k 

Similar equations can be written for special relations 
between Ehx and Eh2 generated by the various symmetry 
elements in centrosymmetric and noncentrosymmetric 
space groups which result in IEhal = Ifh21. Such special 
relations among the structure factors are listed for cen- 
trosymmetric crystals in a series of papers in Acts 
Crystallographica [starting with Karle & Hauptman 
(1959), and concluding with Karle & Hauptman (1961)]. 
Similar relations are readily determined for noncen- 
trosymmetric space groups. 

An application of equation (4) with p = 2 was made 
to the structure determination of a cyclic peptide com- 
posed of 4 glycyl and 2 alanyl units. Table 1 is illus- 
trative of the nature of the resulting phase information. 
The fourth column gives the value of cos (~0h~ +~0hz+ 
~0bx_h2) computed from the correct phases listed in 
column three for the final structure. The last columns 
give four values of this function as computed from the 
right side of equation (4). The number of terms con- 
tributing to each calculation is indicated in parentheses 
and was determined by requiring that at least one fac- 
tor in each product of three appearing in the first aver- 
age in the numerator of equation (4) have an [El value 
larger than 2.1, 1.8, 1.6 and 1.4, respectively, for the 
four values listed in Table 1. Except for the fifth triple, 
inspection of the last four columns reveals computed 
values for the cosine functions which are in regions of 
sampling size that satisfy the criterion of minimum 

Table 1. Application of  equation (4) to data from a cyclopeptide consisting of 4 glycyl and 2 alanyl units 

Columns 4 and 5-8 compare results for cos (0~ha + q~hz+ ~°--ha--h2) as obtained from the known structure and from equation (4). 
The numbers in parentheses represent the number of contributors to the averages occurring in equation (4). 

COS (qThl + q~h2 ~- q~--hl--h'~) COS (~Ohl Jr- (Ph2 + qT_hl_h2 ) 
Triple [Eh[ ~Oh from ~o h - from equation (4) 

[ 0  5 6 2"33 -1-57 

I 7 7 2"62 - 1"66 0"99 1"51 1"53 1-59 1"63 
5 12 1 2"81 3"11 (146) (264) (497) (807) 
0 5 i~ 2-33 1"57 

t i 0 I  2 " 4 3 - 1 " 5 7  0-71 1.03 1-07 1.09 1.21 
5 7 2.40 0.78 (405) (743) ( 1 3 4 6 )  (2303) 

1-g ~ 2-47 1-84 
16 2 2.47 - 1.30 -0.86 - 3.20 - 1.68 - 1.21 - 1-14 

/lO 0 0 1-87 3.14 (70) (136) (256) (392) 
0 ~ ~ 2.22 3.14 
0 3 2 3.41 -1.57 -1-00 -0.12 -0.22 -0-23 -0.15 
0 11 6 3-30 1.57 (267) (477) (873) (1456) 

i-9 2[ 2.49 0.93 
0 3 2 3"41 1"57 1-00 - 1"64 - 1"29 - 1"04 -0-71 
3 16 6 2"03 -2-49 (208) (405) (759) (1237) 
3 ]9 ~ 2.49 -0.93 

12 1 2"81 0"00 0-95 -0"81 -0-99 - - 0 " 9 7  -0"94 
2 7 3 1 "83 1 "25 (50) (95) (175) (265) 
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change of value with number of contributors. If the 
computed value chosen according to this criterion ex- 
ceeds a magnitude of unity, it is set back to unity. It 
would be desirable in the application to an unknown 
structure to continue the computation of the fifth triple 
(and perhaps the third one) with more contributors, if 
available. If the value continued to change at the same 
rate, this would be grounds for rejecting the calcula- 
tion. The first two triples were selected to represent the 
major portion of the results obtained from the com- 
putation. A majority of the acceptable calculations 
carried out for the peptide were in comparable or some- 
what better agreement with the expected value than 
these first two. They confirm the basic assumption 
made in carrying out the symbolic addition procedure, 
namely that the sums of the phases ~0hl + ~0h2 + rP-hl-b2 
associated with the larger ]E[ values are generally close 
to zero. Note that the computations are made only for 
triples based on large [El values. 

Of particular interest are those triples whose phases 
do not sum approximately to zero, since the latter is 
the assumed basis for the symbolic addition procedure. 
An extreme case would be to sum to n. In such in- 
stances the symbolic addition procedure would give a 
phase indication in error by n radians. The third and 
fourth triples in Table 1 are illustrative of this case. Such 
occurrences are fairly rare and similar indications from 
equation (4) are correspondingly rare. In the case of 
the fourth triple, the doubt cast by equation (4) on the 
indication of the sign of ~00.Xl,6 from the symbolic ad- 
dition procedure was instrumental in changing a signif- 
icant number of the phases and readily facilitated the 
structure determination. 

The last two triples in Table 1 are illustrated for the 
purpose of inserting a strong word of caution con- 
cerning the use of equation (4). Here are two examples 
(accepting the indications for the fifth triple) in which 
the triples are indicated to be exceptions to the as- 
sumption of the symbolic addition procedure, the im- 
plication being that the sums of the phases are close 

to n. As shown in column four, they are clearly not 
exceptions and, in fact, overwhelming evidence from 
the symbolic addition procedure confirmed this, so that 
the implications of equation (4) were ignored and no 
difficulties arose in the phase determination. 

In its use as an auxiliary formula for application 
with the symbolic addition procedure, equation (4) can 
help confirm that most triples have sums of angles close 
to zero and throw doubt on others. For the ones in 
doubt, it is worthwhile to try to avoid their use in the 
early stages of the phase determination or perhaps de- 
note the appropriate phase by a symbol if it is impor- 
tant to utilize it in succeeding steps in the procedure. 
It is apparent however that information from equation 
(4) can be incorrect, an extreme case occurring when 
the sign of the first average in the numerator is wrong 
and of a magnitude to cause an error in the sum of 
phases as large as n. The conclusion is that the results 
from equation (4) can be helpful in combination with 
the symbolic addition procedure, but individual phase 
indications should be regarded as suggestive rather than 
conclusive. 

Mr. Stephen Brenner wrote the computer programs 
and carried out the calculations described in this note. 
His fine cooperation is very much appreciated. 
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